
Making Drupal Behave
Automated Testing with Behat

http://bit.ly/1bNyvgo

http://bit.ly/1bNyvgo
http://bit.ly/1bNyvgo

Nice to meet you

Howard Tyson

● @tizzo on drupal.org, github, twitter, IRC,
and everywhere else

● Drupaler for 7 years
● VP of Engineering at Zivtech

Frank Carey

● @frankcarey on drupal.org, github, twitter,
IRC, and everywhere else

● Drupaler for 7 years
● VP of Product at Zivtech
● AI, Robotics, and Brain Science

The Problem

Regressions

● You change something somewhere
● but that breaks something somewhere else
● and you fix it
● breaking that first thing again…

The Solution

Testing, maybe you’ve heard of it?

Fail happens

Dealing with it is on you

Test Driven Development (TDD)

● Red -> Green -> Refactor
● Generally highly implementation specific
● Tests that the code does what the code

does, not what the business needs it to do
● Writing tests is laborious

Behavior Driven Development (BDD)

● Shared language
● Shared understanding
● Tests composed of human readable pieces

Gherkin

● DSL for describing tests
● human readable
● but not just natural language

Start by explaining why this exists

Add scenarios that explain what you
do

Rubber, meet road

The Tools

● Behat
● Mink
● Mink Extension
● Drupal Extension

http://behat.org/
http://behat.org/
http://mink.behat.org/
http://mink.behat.org/
http://extensions.behat.org/mink/
http://extensions.behat.org/mink/
https://drupal.org/project/drupalextension
https://drupal.org/project/drupalextension

Behat

● Equivalent to Ruby’s Cucumber
● Runs the feature files described earlier
● Maps each english line in the Domain

Specific Language to pre-defined functions
● *NOT MAGIC* - uses regular expressions

http://cukes.info/

Mink

● Equivalent to Ruby’s Capybara
● Provides a common API to to multiple

browsers via drivers
○ goutte
○ selenium
○ zombie.js

■ this one will eat your brains
■ no …really, you shouldn’t use it…

https://github.com/jnicklas/capybara
https://github.com/fabpot/goutte
https://github.com/fabpot/goutte
http://docs.seleniumhq.org/
http://docs.seleniumhq.org/
http://zombie.labnotes.org/
http://zombie.labnotes.org/

Behat Mink Extension

● Provides the glue that ties Behat and Mink
together

● Mostly a large set of reusable steps with a
few utilities mixed in

Drupal Extension

● Adds more Drupal specific steps
● Provides drivers with multiple ways to

interface with a Drupal site
○ Native bootstrap
○ Drush

Let’s see it

Writing your own steps

The anatomy of a behat project

Defining your own functions

Here, getTestData() is a method that fetches data about test content from an
HTTP callback provided by a custom module.

Reuse existing steps

Tips

Tips

● Run tests regularly
● Run tests with every commit (or push)
● Speed is an important feature
● It’s insanely helpful to make a custom Drupal

module that can facilitate test setup and
teardown

Running tests with Jenkins

Reporting on test results

One-off steps

Given I’m logged in
Then I should see that node 11 is unpublished

The “11” should be a variable at least.
What about “unpublished” ?

Overly specific Scenarios

Create Meta-Steps that use sub-steps

Magicky Handwavy Steps

Example:
 Given I invent a time machine
 Then I should get rich

These steps don’t give enough detail into what’
s actually happening and what’s being tested.

Testing Variations

Useful to test variations or extremes of
scenarios with Outline Scenarios

pre-req steps

Try to avoid having scenarios and features that
depend on others being run first.

Best practice IMO is to use “Backgrounds” http:
//docs.behat.org/guides/1.gherkin.
html#backgrounds

Gotchas!
It’s not all roses..

Gotchas!

● Classes Galore
● Javascript / Ajax
● @beforeFeature
● I should NEVER see..
● Inconsistently returned objects.

Gotchas! - So. Many. Classes.

Behat and it’s dependencies have a crap ton of
very small classes which can make it a bit of a
beast to track down what methods are available
beyond the FeatureContext class.

Gotchas - Javascript / Ajax

Adding the time element…
For instance the “I press ” events do not block,
so you need to wait, but how long?

Solutions:
Set a specific wait or polling..

Setting a specific Wait

Good:
● It’s easy to do.
Bad:
● Maybe the load takes longer sometimes
● What are you waiting for?
● Waits add up!

Wait Example

http://pastebin.com/ptZYmCmr

Polling the “browser”

Good:
● You’re only waiting as long as necessary
● You can MUST set a timeout.
Bad:
● It’s not built in to any existing step functions
● Fails will wait the FULL timeout

Polling Example 1 - Spin()

http://pastebin.com/ZjbuT9KS

Polling Example 2 - Closures (PHP >= 5.3.0)

http://pastebin.com/ZjbuT9KS

Polling Example 3 - Smarter Search

http://pastebin.com/ZjbuT9KS

Gotchas! - I should NEVER see ..

“I should NEVER see.. PHP warnings/errors”
There isn’t really a good way to do this type of
thing. In theory it should look for this on every
request, but you’d need to override classes.

Gotchas! - @beforeWTF!

@beforeFeature
@beforeOutline
@beforeScenario
@beforeStep
- Param types are different for each
- @beforeFeature is static!
- More Magic that can be overlooked

Inconsistent Returns

find() returns an object if it finds it, but null if it
doesn’t and it doesn’t throw an error when it
doesn’t find the thing it was looking for.

If you aren’t careful, this will throw a PHP
undefined method error and crash your whole
test instead of just failing.

Testing the Tests

Testing Tests

Given Tests are in Code
And Code is written by Humans
And Humans make mistakes
When Tests have mistakes
Then We need to create tests for the tests

Writing behat tests for behat tests

Writing behat tests for behat tests

Kidding! - But a few things can go wrong..
● Your tests throw unexpected exceptions
● False Positive - Tests fail when they should pass
● False Negative - Test pass when they should fail
● Intermittent Fails
● WTF Fails

Simple Debugging

Getting more details
Pausing the action with breakpoints
Inspecting the page (browser)
Inspecting PHP Variables

How do we do this best in behat?

Getting more details

behat --expand -v : More details..

Details - Find the code

behat -di
Lists:
● ALL of the step definitions
● Step descriptions (if they exist)
● Actual method names (beware colors)

Details - Understand the code

Once you have the actual method name you
should be able to find the code in your context
or one of it’s parent classes.
Take the time to understand what it’s really
doing to perform an action or search the page.
i.e. - Is it searching for first occurrence, html id,
inner text, label?

Pausing the action

Create a custom “breakpoint step” you can add
between steps to debug. It simply waits until
you hit enter on the command line.

Gives you time to inspect the page (selenium),
the site, or the database before moving on to
the next step.

Breakpoint Example

http://pastebin.com/K6Vx95R4

Inspecting Variables
custom dpm() (or dsm) for behat:

http://pastebin.com/zP97EMJX

Inspecting Variables
Why not use debugger to run behat?

On my todo list, but I haven’t tried it. I’ve seen
places where they say xdebug needs to be off,
but this suggests it might work.
http://bit.ly/1dfD0jz

http://pastebin.com/zP97EMJX

http://bit.ly/1dfD0jz
http://bit.ly/1dfD0jz

Inspecting the Page

Two useful steps:
Then print last response
 - Prints the html to the command line

Then show last response
 - Opens html (tmp file) in browser
 - Pauses steps until browser’s closed

Questions?

@tizzo

@frankcarey

