
Drupal and Continuous Integration
DrupalCampNJ - 2014

Who we are

Henry Umansky
Princeton University
humansky@princeton.
edu

Jason Howe
Drew University
jhowe@drew.edu

What is Continuous Integration?

“Continuous Integration is a software
development practice where members of a
team integrate their work frequently, usually
each person integrates at least daily - leading
to multiple integrations per day.”

-Martin Fowler

Principles of CI?

● Maintain a code repository
● Automate the build
● Make the build self-testing
● Everyone commits to the baseline every day
● Every commit (to baseline) should be built
● Keep the build fast

Principles of CI (cont’d)

● Test in a clone of the production
environment

● Make it easy to get the latest deliverables
● Everyone can see the results of the latest

build
● Automate deployment

Advantages of CI

● prevent integration problems

● identify failing code early

● immediate unit testing of all changes

● "current" build for testing, demo, or releases

Disadvantages of CI

● Initial setup time required

● Well-developed test-suite required to
achieve automated testing advantages

Maintain a code repository

● Version Control Systems: git or svn

● use Features as much as possible

● Strongarm Module

Automate the Build

● Hudson/Jenkins

● Drush

● Build triggers

Make the build self-testing

● Drupal Coder Review/Security Review

● Code Quality - [php | css | js] lint

● PhantomJS and Selenium

● Checkstyles/PHPMD

Daily Commits

● Commit at least once a day

● Reduces potential conflicts

● Triggers automated builds

Demo

Automated Deployment

● Identical /dev/qa/prod systems

● Trivial to move code between environments

● Single button click to perform complex tasks

Automated Deployment

● Single button click to deploy
production code to n webservers.

● Deployment is simply a “git pull”,
executed via remote ssh.

● Auto deployment to dev upon code
commit to dev.

Achieving Identical Environments

● Everything has to be automated, no lovingly
handcrafted environments.

● Bash script fired by Jenkins, builds
databases, instantiates drupal instance in all
environments.

● Tools to sync content from prod->dev and
code from dev->prod

Known state of environments

● You always know that Dev contains
everyone’s latest contributions.

● You always know that Prod is a copy of
what’s in the repo.

From the Operations Perspective

● Keep Server configs in (my.cnf, http.conf,
etc) in a configuration repository.

● New webhead is trivial:
○ checkout config repo and run setup script.
○ symlinks config files, checkout drupal.
○ Essentially a self-configuring server

● Works for DR too!

Other Advantages for Ops

● Knowing, without a doubt the current system
state.

● Ability to spin up a test environment in
minutes.

● Aids in troubleshooting and quick issue
resolution. (Good comments commits help
too)

Questions?

